Cross-Border Infrastructure in Africa

- Introduction
- Materials, Methods
 - Methodology
 - Data
 - Variables
 - Analysis
- Results
- Discussion & Conclusion
Introduction

- USA – Canada: one border crossing every 65km

- Mozambique – Tanzania: one border crossing every 350km
Introduction

• African Borders were drawn by colonial powers, adopted by OAU in 1964

• Today, the AU aims to both demarcate and overcome borders

• Cross-Border Infrastructure (CBI) is tangible proof of good relations

• There is no large scale research on CBI available

• Why are there many CBI on some borders, and almost none on others?

Roman Meyer, GIZ-AUBP
Materials, Methods - Methodology

- Logistic Regression
 - Predicts the probability of an event to happen, e.g. 70% yes / 30% no
 - Event = raster cell contains CBI
 - Non-geographical analysis

- Not used: Linear Regression
 - Only if dependent variable is quantifiable, e.g. size, costs

- Not used: Geographically Weighted Regression
 - Only for spatially continuous phenomena, e.g. geologic layers
Materials, Methods - Data

- Dependent Variables:
 - Large CBI (298)
 - OSM roads (3328)

- Airports
- Bridges
- Hydropower
- Railways
- Ferries
- Off. Crossings
Materials, Methods - Data

- Independent Variables
 - Pixel Size
 - Border length
 - Distance from coast
 - Distance to nearest capital
 - Elevation
 - Slope
 - River size
 - Population Density
 - Fraternisation
 - GDP per Capita
 - Trade
 - Shared RECs memberships
 - Differing RECs memberships

- Geometrical
- Topographical
- Sociological
- Economical
- Political
- Pixel-specific
- Boundary-specific
Materials, Methods - Data

- **Data Sources**
 - OSM
 - LSIB, US Govt
 - IOM
 - World Bank
 - FAO
 - WWF
 - VGI
 - etc.

- **Data Formats**
 - Table
 - Vector
 - Raster
Materials, Methods - Variables

- Reference Geometry: LSIB
- Rasterisation 15" (ca. 460m)
- > 230‘000 raster cells
- One raster layer per variable
- 230‘000 x 2y x 13x = 3.5Mio values

- Challenges: some data unavailable for the Sahrawi Republic (Western Sahara)
 - excluded from the analysis
Materials, Methods - Variables

- Challenges (continued)
 - Choice of raster size: one, two or three CBI? Decision: 15" (ca. 460m)

- Phantom crossings. Solution: only one CBI per intersecting feature

- Inconsistency between OSM and LSIB

- Erroneous OSM attributes

- De jure vs. de facto boundaries

- Other unexpected situations
Materials, Methods - Analysis

- Rule of 10
 - At least 10 events per variable
- Rare events
 - < 3% events vs. > 97% non-events
 - Under-prediction of events
- Variance Inflation Factor
 - Remove variables with VIF > 5
- Correlation
 - Analysis of high correlations between variables
- Stepwise regression
 - Forward / backward elimination of variables
Results

- Large list of coefficients
- Expected (green)
- Unexpected (red)
- Ambiguous (mixed)
- Pseudo-R2 between 5% – 21%
- Borders with more / less CBI than expected
- Impact per variable on overall probability
Results

- Prediction of CBI on continental and regional level
Results

- Prediction of CBI in Southern Africa, using coefficients from Eastern Africa
Discussion & Conclusion

- Large CBI as well as cross-border paved roads are most likely:
 - In areas with high population density
 - close to capitals
 - in flat terrain
 - on dry land or across small rivers
- Some challenges, such as
 - Missing Data on Sawhari Republic (Western Sahara)
 - Completeness and correctness of OSM
 - CBI are Rare Events
Discussion & Conclusion

- Pixel-specific variables are better than boundary-specific ones
- Borders of Regional Economic Communities have no impact on CBI
- Possibly better economic and sociological indicators available
- Models explain 5-21% of why a CBI is or isn‘t present in any cell
- Continental models are less accurate than regional ones
- Regional models shouldn‘t be applied to other regions