

Using Remote Sensing and Geospatial Systems to Support Decision-making for Sustainable Agriculture and Food Security in Rwanda

AfricaGIS 2019

Kigali, Rwanda, November 18-22, 2019

Robert Beach, Daniel Lapidus, Meghan Hegarty-Craver, Jason Polly, James Rineer, and Dorota Temple

RTI International is a registered trademark and a trade name of Research Triangle Institute.

www.rti.org

RTI International

- RTI International is a non-profit independent research institute headquartered in the Research Triangle Park in North Carolina, USA.
- Our mission is to improve the human condition by turning knowledge into practice.
- We explore new ideas and seek solutions to critical issues facing people around the globe.

Multidisciplinary Research

- RTI International is a multidisciplinary research organization.
- We apply a diverse set of services and capabilities across key practice areas to contribute to solving critical issues.

Project Background

In its strategic focus area of Food Security and Agriculture, RTI funded a research project to explore methodologies for analyzing big **datasets** to **extract information** to support **decision making** for agriculture.

Other presentations at AfricaGIS 2019

- Rineer et al. "Using UAV-Collected Ground-Truth Data and Computer Vision for Identification of Crop Type for Sustainable Agriculture and Food Security in Rwanda" – this session
- Robert Beach et al. "Evaluating the Effects of Alternative Management Strategies on Rwandan Agriculture" – session 3C

Short-term Challenges:

- How much land has been planted with which crops and where?
- What is the status of the crops during the growing season and expected production?

Medium to Longer Term Challenges:

- How to prioritize investments (e.g. improved seeds, erosion control, irrigation)?
- What is the impact of climate change on crops?

Stakeholders want more timely and actionable information to address food security

- In many regions, governments, farmers, and other stakeholders need better information to make datadriven, evidence-based decisions
- Numerous efforts making use of remote sensing, big data, and analytics underway but few cases where these efforts are informing policy in lowand middle-income countries to date
- Our project is developing methods and tools for Rwanda, though will be more broadly applicable

Overview

- Flew drones 3 times during 2019 Season A in each of 6 different locations representing different agroecological zones
- Used high resolution drone images to calibrate freely available satellite data (Sentinel-1 and Sentinel-2) for crop analytics
- Tracking changes in normalized differentiated vegetation index (NDVI) over the growing seasons to estimate:
 - Timing of land clearing for planting crops
 - Changes in NDVI of crops during the growing season
 - Timing of crop harvest
- Classifying land cover/land use type (8-class) at 10m x 10m resolution at the national level
- Combining spatial data on soils, weather, and other biophysical factors and NISR survey data to estimate suitability, simulated productivity, and effects of management practices

Characterizing Current Situation

Using satellite data to characterize land cover

- We used machine learning techniques to classify land cover into 6 classes
- We used training data from satellite imagery and pre-existing land cover classes
- Results close to NISR official data from 2017 Season A

Source	Bare	Grass	Forest	Water	Impervious	Agriculture	Total Area	
RTI (6 – class)	2	108	156	3	36	357	661	
Source		Fallow	Non-Ag			Cultivated	Total Area	
NISR (3- ⁸ s)	N/A	99	114	N/A	N/A	364	577	

Share of agricultural land with visible crops, 2019A

District	In Production (%)									
District	Aug	Sept	Oct	Nov	Jan	Feb				
Nyarugenge	0.463	0.608	0.560	0.843	0.858	0.672				
Gasabo	0.439	0.755	0.542	0.830	0.818	0.702				
Kicukiro	0.348	0.505	0.213	0.584	0.813	0.719				
Nyanza	0.263	0.608	0.627	0.734	0.682	0.660				
Gisagara	0.251	0.589	0.670	0.866	0.831	0.755				
Nyaruguru	0.412	0.480	0.601	0.771	0.826	0.783				
Huye	0.282	0.501	0.629	0.823	0.494	0.728				
Nyamagabe	0.463	0.527	0.560	0.756	0.698	0.757				
Ruhango	0.310	0.522	0.553	0.734	0.421	0.456				
Muhanga	0.431	0.605	0.547	0.731	0.634	0.742				
Kamonyi	0.328	0.590	0.644	0.755	0.636	0.452				
Karongi	0.520	0.512	0.597	0.838	0.648	0.677				
Rutsiro	0.632	0.578	0.641	0.884	0.723	0.758				
Rubavu	0.535	0.541	0.694	0.832	0.619	0.456				
Nyabihu	0.459	0.535	0.477	0.899	0.855	0.684				
Ngororero	0.437	0.480	0.291	0.807	0.801	0.752				
Rusizi	0.508	0.590	0.877	0.939	0.878	0.884				
Rulindo	0.443	0.724	0.720	0.836	0.843	0.716				
Gakenke	0.450	0.628	0.263	0.877	0.877	0.834				
Musanze	0.348	0.545	0.599	0.915	0.866	0.617				
Burera	0.466	0.517	0.467	0.904	0.811	0.571				
Gicumbi	0.532	0.674	0.528	0.927	0.807	0.584				
Rwamagana	0.445	0.607	0.730	0.880	0.903	0.792				
Nyagatare	0.249	0.326	0.523	0.901	0.902	0.391				
Gatsibo	0.384	0.413	0.631	0.921	0.916	0.605				
Kayonza	0.275	0.379	0.502	0.711	0.792	0.610				
Kirehe	0.236	0.480	0.582	0.709	0.847	0.809				
Ngoma	0.286	0.536	0.654	0.839	0.924	0.798				
Bugesera	0.235	0.380	0.348	0.504	0.710	0.492				
Nyamasheke	0.636	0.589	0.810	0.919	0.789	0.862				
NATIONAL	0.396	0.542	0.611	0.810	0.784	0.677				

% Agricultural Land with Crop Cover

Labeling satellite grid cells from drone image

Application of calibrated machine-learning algorithms for classification

Identification of land cover/land use at the national level

Characterizing Baseline Conditions (Simulated Suitability and Productivity)

Previous Maps of Crop Suitability for Maize

Verdoot et al., 2006 (Ghent University)

CGIAR, 2016

Seasonal Crop Suitability Map for Maize by Season – 1 km resolution

Season A (September – February)

Season B (March – June)

RTI International (2018)

Parameters include: Precipitation, temperature, slope, elevation, soil drainage, soil clay, soil depth, soil cation exchange capacity, soil carbon, soil pH. Data Sources: Climate Data, Worldclim MeteoRwanda; Soil data from ISRIC SoilGrids and MINAGRI; Elevation data, SRTM 15

Simulated Productivity Maps for Season A – 1 km resolution

Avg. Climbing Bean Productivity (kg/ha)

Avg. Irish Potato Productivity (kg/ha)

Developed by correlating historical yields (NISR) with global gridded environmental variables (1 km resolution). Parameters include: Precipitation, temperature, slope, elevation, soil drainage, soil clay, soil depth, soil cation exchange capacity, soil carbon, soil pH. Data Sources: Climate Data, Worldclim and MeteoRwanda; Soil data from ISRIC SoilGrids and MINAGRI; Elevation data, SRTM

Scenario Modeling: Projecting Future Impacts

Assessing impacts on agriculture

Step 1: Characterize current situation

Step 2: Project how things will change

practices

Step 3: Identify impacts

Example: How does irrigation affect the productivity and profitability of different crops, according to season and geography? Where would the benefits be the greatest for different crops?

25

75 ×

50 km

Projected Change in Rwandan Maize Production under Climate Change - RCP 4.5 in 2050

<u>*)</u>

0

50 km

23

-

Projected Change in Rwandan Sorghum Production under Climate Change - RCP 4.5 in 2050

R)

0

25

25

50 km

23

Projected Change in Rwandan Sorghum Production under Climate Change - RCP 8.5 in 2050

0

Next steps

- Model enhancements
 - Continue expanding labeled ground-truthing dataset
 - Hand-labeling of additional satellite grid cells overlaid with drone images
 - Applying computer vision machine learning techniques to our drone images to expand area of labeled data for calibration of satellite images
 - Further testing of alternative model specifications
 - Implement cross-validation and other robustness checks
 - Improved reflection of growing season dynamics
 - Exploration of utilizing higher-resolution satellite data
 - Incorporate estimation of crop yields
- Ongoing analysis of 2020 Season A (September 2019 February 2020) development in Rwanda
- Scenario analyses
 - Adoption of improved management practices
 - Climate change adaptation scenarios
- Application of techniques developed for an impact evaluation of an agricultural development project in Niger

Robert Beach

Senior Economist and Fellow rbeach@rti.org Dorota Temple Distinguished Fellow temple@rti.org