Quantifying the influence of vegetation in the radiative budget of urban landscapes using DART

Angela Dissegna, Tiangang Yin, Shanshan Wei, Dan Richards and Adrienne Grêt-Regamey

(SEC) SINGAPORE-ETH 新加坡-ETH CENTRE 研究中心 (FCL) FUTURE 未来 CITIES 城市 LABORATORY 实验室

Introduction

• **Urban Heat Island** is the condition where urban areas experience consistently higher air and surface temperatures than the surrounding countryside.

Causes

- 1. reduced vegetation cover
- 2. high runoff from impervious surfaces which reduces soil moisture and evapotranspiration
- 3. <u>complex urban geometries</u> that absorb and trap <u>radiation</u>
- 4. low albedo urban materials that absorb large amounts of solar radiation
- 5. waste heat production from urban activities
- Aim
 - Quantify the effect of urban vegetation on the radiative budget.
 - Contribute to the development of climate resilient urban spaces

Radiative budget

- Key parameter in urban climate models
- Summarizes the interaction between radiation and the urban surfaces
- Directly influenced by urban geometry, surface material, solar incident angle, and atmospheric diffuse radiation.
- Varies temporally and spatially

GIS layers

3-D scene reconstruction

Radiative transfer modelling

Radiative budget time series analysis

Physical-based 3-D Radiative Transfer Model

Discrete Anisotropic Radiative Transfer (DART) model, https://dart.omp.eu/#/

- Models multiple scatterings between simulated scene elements in 3-D
- spectral domain extends from ultraviolet to thermal infrared
- Detailed vegetation parameters
- Surface optical properties for construction materials and vegetation

Spectral reflectance of construction materials from DART database

Spectral reflectance of construction materials from DART database

Absorbed radiation by ground and buildings for different Leaf Area Density values

Although T1 has a relatively low tree cover, the presence of trees in the scenes accounted for a reduction of 15% of the absorbed radiation by the buildings and the ground, when LAD = 1

Absorbed shortwave radiation by ground and buildings

Intercepted shortwave radiation by vegetation

Absorbed photosynthetic active radiation

Validation using Net Radiometer (Telok Kurau flux tower, Singapore)

(a) Time series of DART simulated bottom of atmosphere (BOA) irradiance and exitance; and upwelling and downwelling shortwave radiation obtained from net radiometer measurements. (b) Scatterplot of DART simulated exitance against upwelling shortwave

Summary of results

Typology	Ground cover	LAD				Code	Absorbed by buildings and ground at 13:00	Difference
T5	Grass				1.0	T5-G-1.0	225.53	0.00
T5	Soil				1.0	T5-S-1.0	296.55	71.02
T5	Grass			0.6		T5-G-0.6	299.43	73.90
T5	Asphalt				1.0	T5-A-1.0	310.33	84.80
Τ4	Grass				1.0	T4-G-1.0	366.09	140.56
T5	Soil			0.6		T5-S-0.6	394.27	168.74
T5	Asphalt			0.6		T5-A-0.6	412.54	187.01
T4	Grass			0.6		T4-G-0.6	426.28	200.75
T4	Soil		0.2			T4-S-0.2	446.97	221.44
T5	Grass		0.2			T5-G-0.2	446.97	221.44
T4	Soil				1.0	T4-S-1.0	450.37	224.84
T4	Asphalt				1.0	T4-A-1.0	463.89	238.36
T4	Soil			0.6		T4-S-0.6	528.25	302.72
T4	Grass		0.2			T4-G-0.2	541.84	316.31
T4	Asphalt			0.6		T4-A-0.6	546.30	320.77
T5	Soil		0.2			T5-S-0.2	589.02	363.49
Т3	Asphalt			0.6		T3-A-0.6	602.90	377.37
T5	Asphalt		0.2			T5-A-0.2	617.07	391.54
T2	Asphalt			0.6		T2-A-0.6	702.42	476.89
T4	Asphalt		0.2			T4-A-0.2	704.40	478.87
T1	Asphalt				1.0	T1-A-1.0	708.37	482.85
T1	Asphalt			0.6		T1-A-0.6	740.34	514.81
T1	Asphalt		0.2			T1-A-0.2	795.37	569.84
T5	Asphalt	0.0				T5-A-0.0	798.48	572.95
T2	Asphalt	0.0				T2-A-0.0	820.65	595.13
T4	Asphalt	0.0				T4-A-0.0	837.20	611.67
Т3	Asphalt	0.0				T3-A-0.0	838.16	612.63
T1	Asphalt	0.0				T1-A-0.0	838.19	612.66

Conclusions

- This research contributes to a better understanding of the effect of vegetation and urban form in the radiative budget of a city.
- Our approach can be used for neighborhood-scale analysis, at any desired location of a city, allowing to test scenarios with varying surface materials and vegetation properties.
- The data used in this study are either open or commercially available, which allows replication in other cities.

Future work

- Spatio-temporal analysis of Mean Radiant Temperature (Tmrt) based on DART radiative budget.
- Outdoor Thermal Comfort

Thank you!

Contact: dissegna@arch.ethz.ch