

GIS-based risk mapping of illegal discharges into stormwater drainage systems in Cape Town

Alex Kuhudzai Supervisor: Dr Asante Yaw-Owusu

Table of Contents

- About the Presenter
- Background
- Research Question, Aims and Objectives
- What is Illegal Discharge
- Methodology
- Datasets Used
- The AHP Process
- The Saaty Table
- Pairwise Comparison Method
- Results and Recommendations

About the Presenter

- Geospatial Analyst at Umvoto Africa (2008)
- BSc Hons (UFH)
- MTech Cartography (CPUT)

- Black River (News24, October 2019)
- Discovered during the Peninsula Paddle, an annual event started in 2010 to highlight the state of canals, rivers and lakes between Muizenberg and

Woodstock

The Research Question, Aim and Objectives

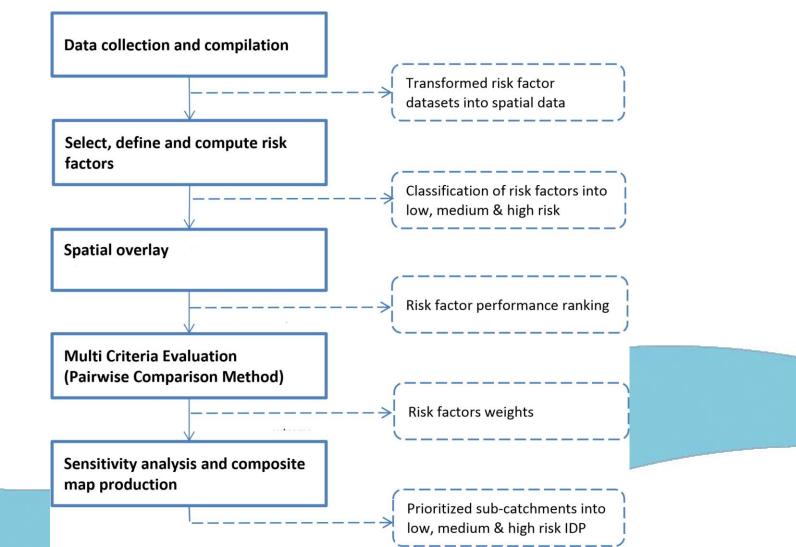
• Where are the areas of the urban sub-catchment that are at risk of illegal discharge into waterways in the City of Cape Town Metro?

Aim

 Develop desktop procedures for identifying priority areas of illegal discharges in urban sub-catchments based on their low, medium and high-risk levels.

Objectives

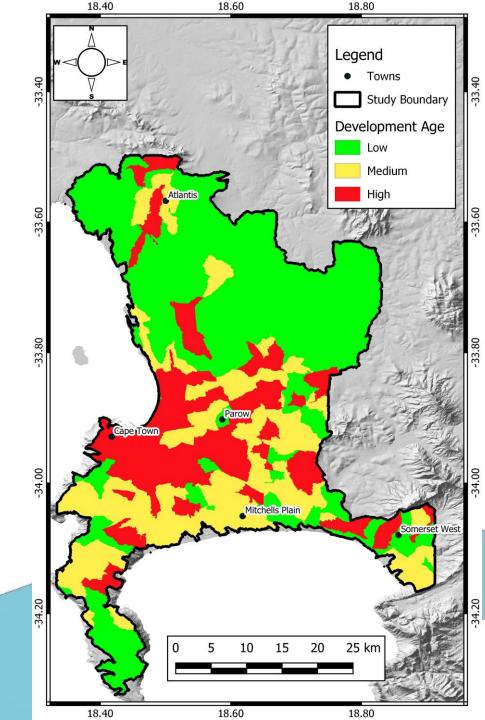
- Carry out spatial analysis of hydraulic, hydrological and land use datasets to classify and identify areas at high risk of illegal discharge potential (IDP)
- Develop procedures for risk mapping of IDP


What is Illegal Discharge

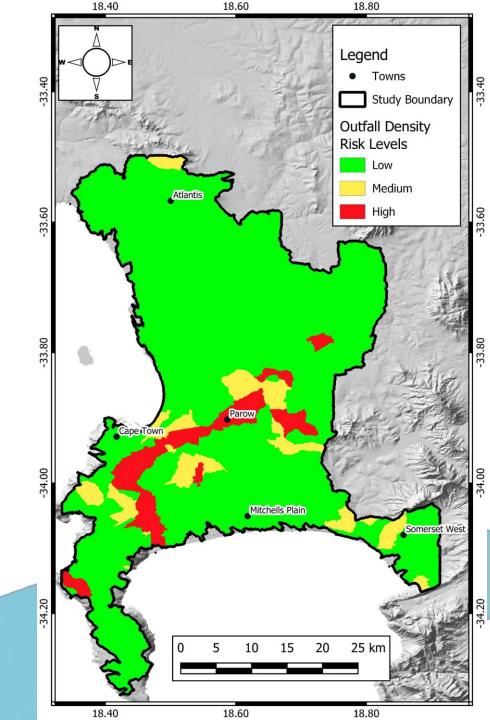
• "IDs are defined as a storm drain that has measurable dry weather flows containing pollutants" (CWP, 2011).


Methodology

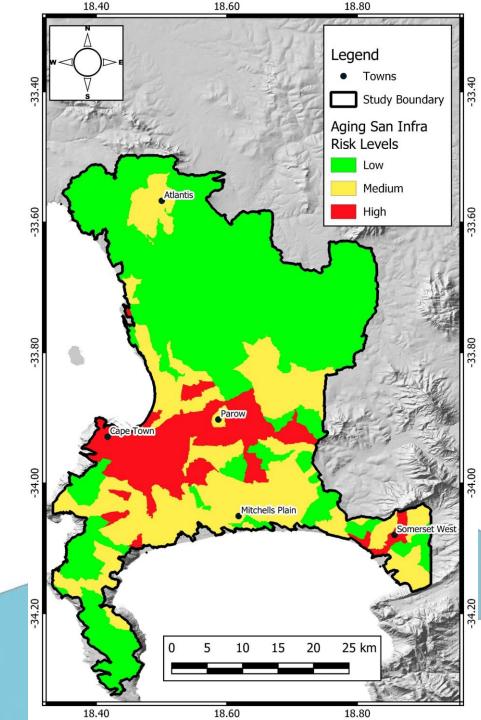
Dataset 1 : Population Density (2011)


- Calculate Population Density (Pop total*1000000)/ (Shape Area)
- Symbolize and reclass into 3 using the Jenks Natural Breaks (low, medium, high)
- Jenks Natural Breaks is a data clustering method designed to determine the best arrangement of values into different classes

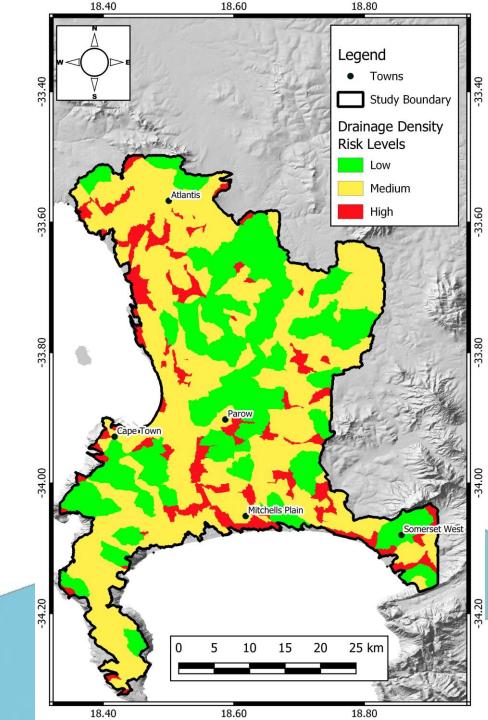
Dataset 2: Development Age (Stormwater)


- 2019 age (to get age)
- Spatial join with sub catchments (average age in catchment)
- Symbolize using Jenks and reclass

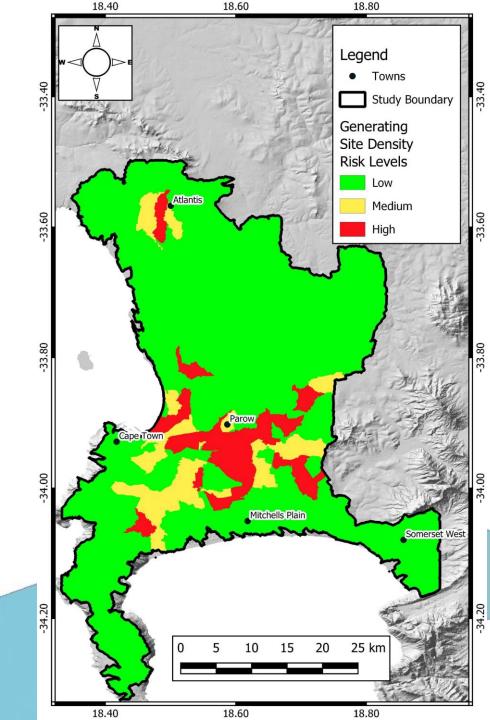
Dataset 3: Outfall Density


- Outfalls (input), rivers file and sub-drainage areas
- Create a 50m buffer around rivers, use the buffer to clip outfalls within the buffer
- Use result to perform spatial join with sub catchment areas
- Symbolize using Jenks and reclass (0-21, 25-106, >106)

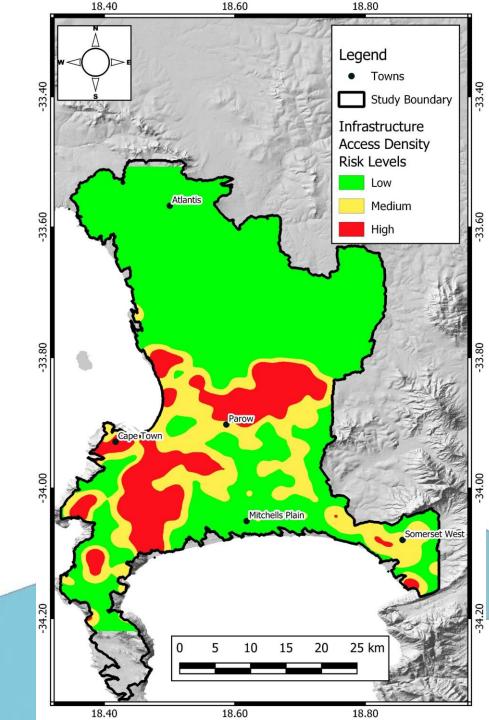
Dataset 4: Aging Sanitary Infrastructure


- 2019 age (to get age)
- Spatial join with sub catchments (average age in catchment)
- Symbolize using Jenks and reclass

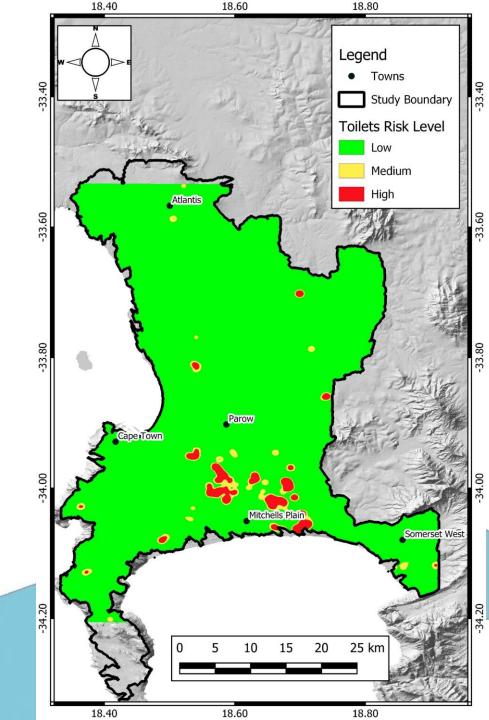
Dataset 5: Drainage Density


- Density of channels and pipes
- Spatial join with sub catchments to get sum
- Calculated density by dividing sum by area
- Symbolize using Jenks and reclass

Dataset 6: Generating Site Density

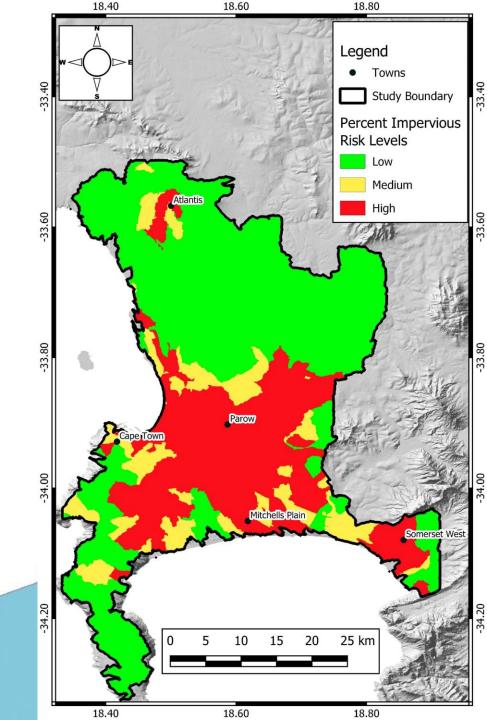

- Convert polygons to points using central coordinates
- Spatial join with sub catchments (count of generating site points in each sub drainage)
- Symbolize using Jenks and reclass

Dataset 7: Infrastructure Access Density


- Number of access
 points to storm drains
 (catch basins, pond
 outlet structures, pipe
 ends)
- Create a raster layer using the Kernel Density Function
- Symbolize using Jenks and reclass

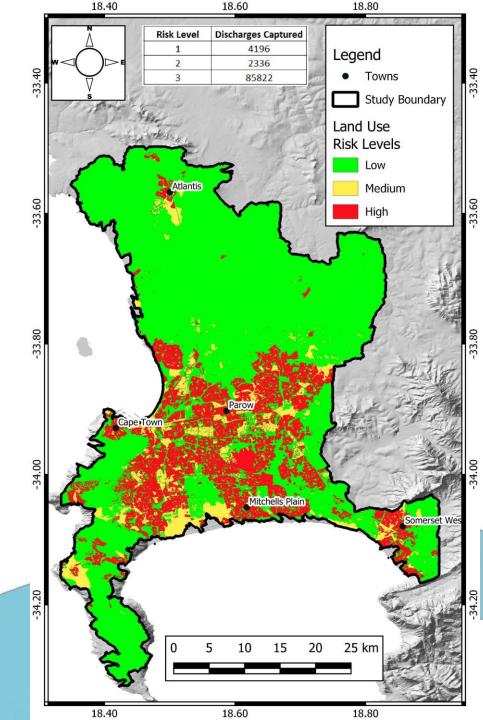
Dataset 8: Toilets In Informal Settlements

- Public toilets in informal settlements in the Metro
- Create a raster layer using the Kernel Density Function
- Symbolize using Jenks and reclass



West Beach 3 informal settlement community leader, Xoliswa Mbetheni says at night residents have to relieve themselves in plastic bags and buckets, which they empty in stormwater drains. They then rinse their buckets at a communal standpipe the next day. (Peter Luhanga, GroundUp)

Dataset 9: Percent Impervious


- Convert the impervious file to raster
- Zonal stats with subdrainage areas (to get total area of impervious per catchment)
- Get percentage covered (sum/area of sub catch)
- Symbolize using Jenks and reclass

Dataset 10: Land-Use

 2013-14 NLC used and reclassed to 6 classes [Commercial (3), Residential (3), Industrial (3), Recreational (2), Instituitional (2) and Agric (1)]

Past Discharge Records

- Point file of all discharges reported to the City (only up to 2012)
- Checked for statistical significance using a 2x2 matrix

(http://vassarstats.net/odds2x2.html)

RISK FACTORS	PDCR : Wastewater	PDCR: Water	PDCR: Greywater	PDCR: Solid Waste	PDCR: All	
Records in Cluster	70120	1009	1124	6313	97419	
Population Density	33	49	29	24	29	
Development Age	46	17	34	37	44	
Outfall Density	11	4	10	5	11	
Aging Sanitary Infrastructure	36	14	16	26	32	
Drainage Density	14	7	12	9	14	
Generating Site Density	25	40	22	24	24	
Infrastructure Access Density	28	10	33	25	28	
Toilets	6	39	13	6	6	
Percent Impervious	82	44	80	86	79	
Land Use	93	82	82	91	90	

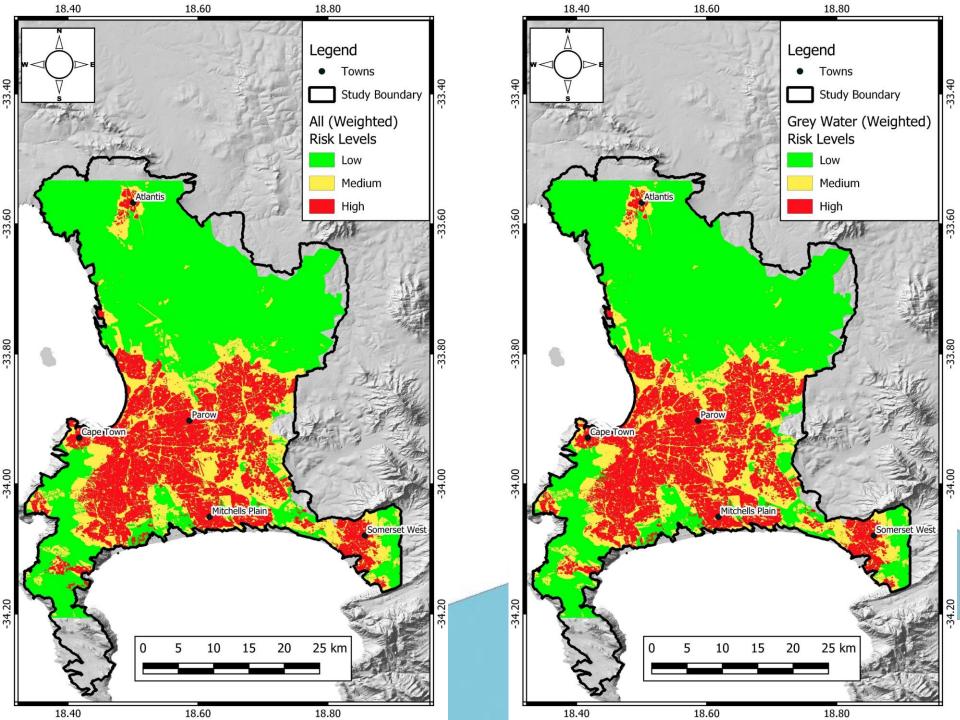
AHP Process

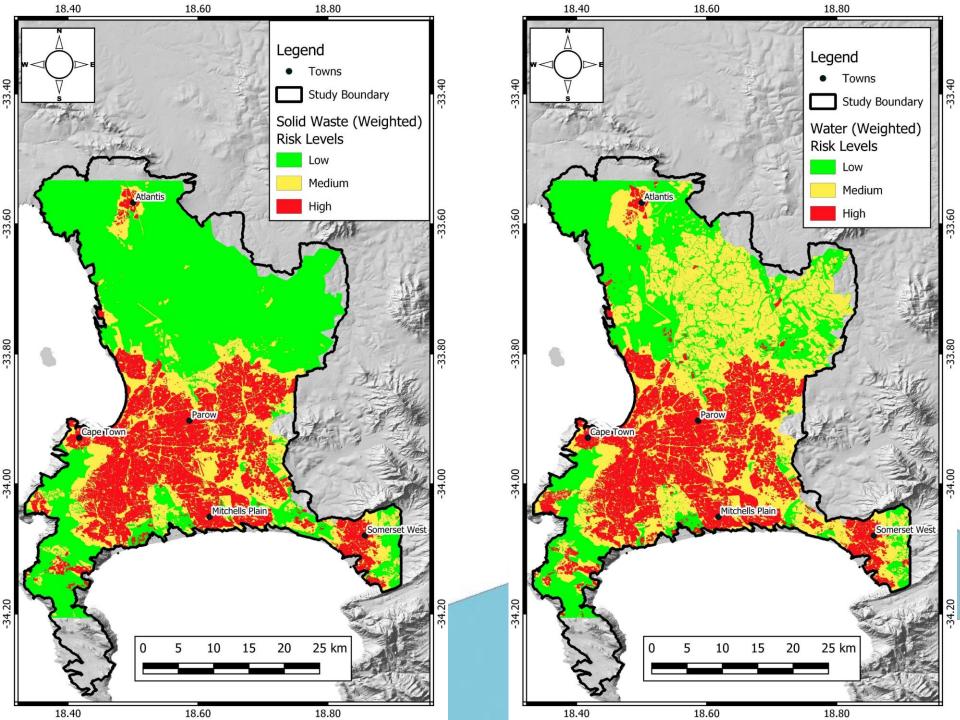
- MCE used to analyse a series of alternatives or objectives with a view of ranking them from high priority to least priority using a structured approach.
- The Analytical Hierarchy Process using the Pairwise Comparison Method was chosen for this study. The basic steps for AHP are as follows
 - Develop a pairwise comparison matrix
 - Normalize the resulting matrix
 - Obtaining weights by averaging cells in each row

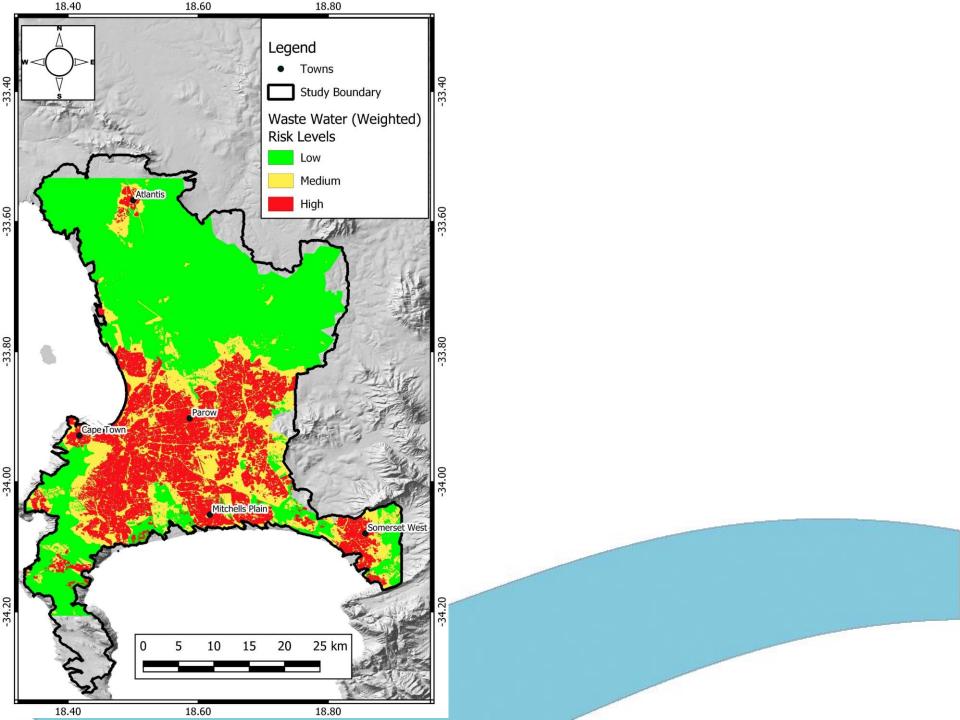
The Saaty Table (1980)

Intensity of Importance	Definition	Explanation	*(Range or) Difference between risk factors' capture rates (%)		
1	Equal Importance	Two factors contribute equally to the objective	0-4		
2	Weak or Slight Importance		5-10		
3	Moderate Importance	Experience and judgement slightly favour one over the other	11-20		
4	Moderate Plus Importance		21-30		
5	Strong Importance	Experience and judgement strongly favour one over the other	31-40		
6	Strong Plus Importance		41-50		
7	Very Strong Importance	Experience and judgement very strongly favour one over the other. Its importance is demonstrated in practice	51-60		
8	Very Very Strong Importance		61-80		
9	Extreme Importance	The evidence favouring one over the other is of the highest possible validity	81-100		

The Pairwise Comparison Method (Water)

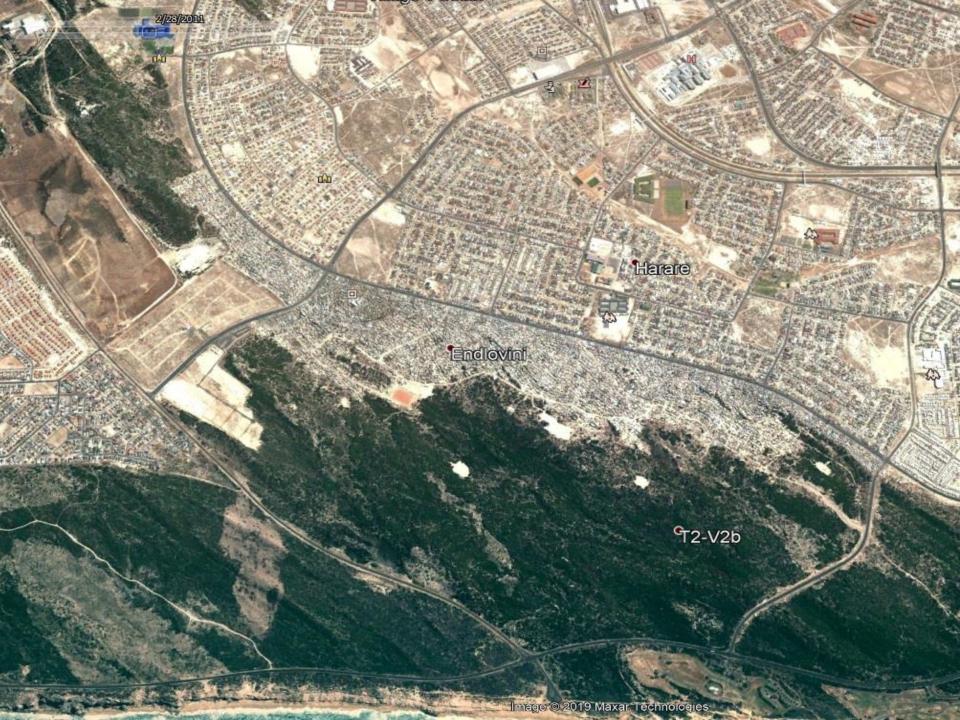

							_		Aging Septic			
						Drainage	Generating Site	Infra Access	Tanks		Percent	
		PpIn Density	Dev Age (Storm)	Outfall Density	Aging San Infra	Density	Density	Density	(Toilets)	Land Cover	Impervious	Land Use
	PpIn Density	1		4	4	4	3	4	3	1/5	1	1/7
	Dev Age (Storm)	1/4	1	2	2	2	1	1	1/2	1/7	1/4	1/8
	Outfall Density	1/4	1/2	1	1	1	1/2	1/2	1/3	1/8	1/5	1/9
	Aging San Infra	1/4	1/2	1	1	1	1/2	1/2	1/3	1/8	1/5	1/9
	Drainage Density	1/4	1/2	1	1	1	1/2	1/2	1/3	1/8	1/5	1/9
i	Generating Site Density	1/3	1	2	2	2	1	2	1	1/7	1/4	1/8
	Infra Access Density	1/4	1	2	2	2	0,5	1	1/2	1/7	1/4	1/8
	Aging Septic Tanks (Toilets)	1/3	2	3	3	3	1	2	1	1/6	1/3	1/8
	Land Cover	5	7	8	8	8	7	7	6	1	4	1/4
	Percent Impervious	1	4	5	5	5	4	4	3	1/4	1	1/7
	Land Use	7	8	9	9	9	8	8	8	4	7	1
	sums	15,91666667	29,5	38	38	38	27	30,5	24	6,420238095	14,68333333	2,369048


	ļ												
								Aging Septic					
					Drainage	Generating Site	Infra Access	Tanks		Percent			Score
	PpIn Density	Dev Age (Storm)	Outfall Density	Aging San Infra	Density	Density	Density	(Toilets)	Land Cover	Impervious	Land Use	Sum	(sum/11)
PpIn Density	0,062827225	0,13559322	0,105263158	0,105263158	0,105263	0,111111111	0,131147541	0,125	0,031151493	0,068104427	0,060302	1,041026	0,094639
Dev Age (Storm)	0,015706806	0,033898305	0,052631579	0,052631579	0,052632	0,037037037	0,032786885	0,020833333	0,022251066	0,017026107	0,052764	0,390198	0,035473
Outfall Density	0,015706806	0,016949153	0,026315789	0,026315789	0,026316	0,018518519	0,016393443	0,013888889	0,019469683	0,013620885	0,046901	0,240396	0,021854
Aging San Infra	0,015706806	0,016949153	0,026315789	0,026315789	0,026316	0,018518519	0,016393443	0,013888889	0,019469683	0,013620885	0,046901	0,240396	0,021854
Drainage Density	0,015706806	0,016949153	0,026315789	0,026315789	0,026316	0,018518519	0,016393443	0,013888889	0,019469683	0,013620885	0,046901	0,240396	0,021854
Generating Site Density	0,020942408	0,033898305	0,052631579	0,052631579	0,052632	0,037037037	0,06557377	0,041666667	0,022251066	0,017026107	0,052764	0,449054	0,040823
Infra Access Density	0,015706806	0,033898305	0,052631579	0,052631579	0,052632	0,018518519	0,032786885	0,020833333	0,022251066	0,017026107	0,052764	0,37168	0,033789
Aging Septic Tanks (Toilets)	0,020942408	0,06779661	0,078947368	0,078947368	0,078947	0,037037037	0,06557377	0,041666667	0,025959577	0,022701476	0,052764	0,571283	0,051935
Land Cover	0,314136126	0,237288136	0,210526316	0,210526316	0,210526	0,259259259	0,229508197	0,25	0,155757463	0,272417707	0,105528	2,455473	0,223225
Percent Impervious	0,062827225	0,13559322	0,131578947	0,131578947	0,131579	0,148148148	0,131147541	0,125	0,038939366	0,068104427	0,060302	1,164798	0,105891
Land Use	0,439790576	0,271186441	0,236842105	0,236842105	0,236842	0,296296296	0,262295082	0,333333333	0,623029854	0,476730988	0,422111	3,835299	0,348664
													4



Final Weights

	Final Weights (Water)	Final Weights (Greywater)	Final Weights (Waste Water)	Final Weights (Solid Waste)	Final Weights (All)
PpIn Density	0.154	0.070	0.062	0.051	0.056
Dev Age (Storm)	0.041	0.083	0.100	0.104	0.109
Outfall Density	0.022	0.025	0.030	0.022	0.022
Aging San Infra	0.035	0.031	0.083	0.054	0.063
Drainage Density	0.025	0.028	0.024	0.023	0.026
Generating Site Density	0.108	0.059	0.038	0.051	0.047
Infra Access Density	0.031	0.078	0.051	0.051	0.055
Aging Septic Tanks (Toilets)	0.105	0.028	0.019	0.022	0.020
Percent Impervious	0.120	0.297	0.248	0.304	0.260
Land Use	0.359	0.301	0.345	0.317	0.341



Results and Recommendations

- Some areas captured as high risk repeatedly. These are areas of concern and possible reasons are
 - Industrial areas (linked to land use, percent impervious) as these factors appear to be the most dominant
 - Informal areas with lack of service delivery, etc
- Old datasets used and results could be improved by using up-to-date data

