

Determining the impact of oil spills on vegetation in the Niger Delta using satellite imagery

ABDULLAHI A KUTA¹
STEPHEN GREBBY¹
DOREEN S. BOYD²

¹Nottingham Geospatial Institute, Faculty of Engineering, University of Nottingham, NG7 2TU

²Sahaal of Geography, University of Nottingham, NG7 2DD

²School of Geography, University of Nottingham, NG7 2RD

Presentation outline

Introduction

Study area

Data

Methodology

Results & Discussion

Conclusions

Introduction

- Land cover in the Niger Delta Region has been significantly affected by oil extraction activities, especially the vegetation
- Monitoring the health of vegetation exposed to oil spills in environs such as the Niger Delta can be challenging
- ➤ In this research we aim to investigate the following using Earth Observation data:
 - the role of volume of oil spills and time gap after spills on the ability to detect the effects of oil spills on vegetation health
 - > the temporal response of vegetation following exposure to oil spills

Study Area

- The Niger Delta is located in the Central part of Southern Nigeria
- It is the most densely populated river delta worldwide and has the third largest mangrove forest in the world
- Estimated hydrocarbon reserves of nearly 40 billion barrels (bbl)
- Comprising ~70% of the overall hydrocarbon reserves of sub- Saharan Africa

Figure 1: Map of Nigeria, Niger Delta in light blue and the study area in red.

Some oil spills sites

Data

Table 1: Landsat image downloaded from the USGS website and geometrically corrected and projected to WGS 84 Universal Traverse Mercator Projection Zone 31 and 32.

Satellite	Sensor	Path/Row	Years of images	UTM	Pixel
			acquisition	Zone	sizes(m)
L 7	ETM+	188/56		32	30
L 7	ETM+	188/57		32	30
L 7	ETM+	189/56	2006 to 2018	32	30
L7	ETM+	189/57		31	30
L 7	ETM+	190/56		31	30

Oil spill data:

- The oil spill data were downloaded from Nigerian Oil Spill Monitor website https://oilspillmonitor.ng
- The data is collected by the National oil Spill Detection and Response Agency (NOSDRA) and it contains spatial and attribute data

Methodology

Figure 2: Methodology Flow Chart.

Results & Discussions: impact of oil spill volume and time gap on the health of vegetation

It takes longer time for DV to respond to the impact of oil spills

Figure 3: The relationship between NDVI and time gap after oil spill for (a) Dense vegetation (DV), (b) Sparse vegetation (SV) and (c) Mangrove vegetation (MV).

Impact of oil spill volume on the health of vegetation

Figure 4: The relationship between NDVI and oil spill volumes (all volumes in column 1; >225 bbl in column 2) for (a) DV, (b) SV and (c) MV.

Impact of oil spill volume on the health of vegetation...cont.

Figure 5: The relationship between NDVI and oil spill for volume (225-400 bbl in row 1; 400-1000 in row 2; >1000 bbl in row 3) for (a) DV, (b) SV and (c) MV.

Impact of volume of oil spill and time gap on the health of vegetation...cont.

Figure 6: Linear Regression analysis results between various oil spill volumes and NDVI for different types of vegetation.

DV respond more to the impact of oil spills at a higher volume than the SV and MV

Temporal response of vegetation condition following an oil spill

Table 2: Paired t-test analysis for the spill sites and control (non-spill) sites for different land cover types.

Type of Vegetation	p-values
Dense Vegetation	**
Sparse Vegetation	***
Mangrove vegetation	***

Levels of significance: *** p-value < 0.001 (highly significant); ** p-value < 0.01 (very significant); *p-value < 0.05 (significant); *p-value \geq 0.05 (not significant).

Sparse and mangrove vegetation are the most affected by oil spill.

Temporal response of vegetation condition following an oil spill

Figure 7: Relationship between change in NDVI and number of years after spill at spill sites (SS) and control sites (CS) for (a) DV, (b) SV and (c) MV.

Temporal changes in NDVI before and after spills

Figure 8: Relationship between change in NDVI and oil spill volume for (a) DV, (b) SV and (c) MV.

Temporal response of vegetation condition following an oil spill...cont.

Table 3: Paired t-test analysis for each SS and CS for different vegetation cover types

VT	OSV	p-value	VT	osv	p-value	VT	OSV	p-value
DV			SV			MV		
SSD1	280	ns	SSS1	228	*	SSM1	264	*
SSD2	345.75	ns	SSS2	235	ns	SSM2	800	ns
SSD3	367	ns	SSS3	260	**	SSM3	1020	ns
SSD4	367	ns	SSS4	440.3	ns	SSM4	1510	ns
SSD5	429	ns	SSS5	529.5	ns	SSM5	1554	**
SSD6	1000	ns	SSS6	802.5	**	SSM6	2500	*
SSD7	1430	ns	SSS7	1000	*			
SSD8	1500	ns	SSS8	1500	**			

Note: VT = Vegetation type; $\overline{OSV} = Oil \text{ spill volume (bbl)}.$

Levels of significance: *** p-value < 0.001 (highly significant); ** p-value < 0.01 (very significant); *p-value < 0.05 (significant); *p-value \geq 0.05 (not significant).

Conclusion

- Different types of vegetation respond differently to various volumes of oil spill, with sparse vegetation being the most affected among the three types of vegetation.
- Dense vegetation responds to higher volume oil spills, while the mangrove shows earlier signs of stress than the other types.
- The results could help in designing a vegetation-specific oil spill cleanup program to mitigate the impact of oil spills in the Niger Delta region.

Appreciation to my sponsor

